Things you will need to know for the Real Analysis in MATH20101

Factorisation

In the course we will have need occasionally to factorise a polynomial. We will only be interested in polynomials with real coefficients so the problem is to factorise over \mathbb{R}, i.e. find factor polynomials with real coefficients.

Recall that if a polynomial $p(x)$ has a root a then $x-a$ is a factor of $p(x)$, i.e. there exists a polynomial $q(x)$ such that $p(x)=(x-a) q(x)$. If a is real then the coefficients of $q(x)$ will be real.

1) For $x, y \in \mathbb{R}$ factor
i) $x^{2}-y^{2}$
ii) $x^{3}-y^{3}$,
iii) $x^{n}-y^{n}$, where $n \geq 1$.
2) Factorise the following:
i) (2004) $2 x^{2}-x-6$,
ii) $(2007) x^{2}+x-2$,
iii) (2008) $x^{2}+x-12$,
iv) (2008) $x^{3}-27$,
v) (2009) $x^{3}+x-30$..
3) For more examples, not seen in any exam papers, try factorising
i) $p(x)=x^{4}+x^{3}-2 x^{2}-6 x-4$,

Hint, look for small integer roots.

$$
\text { ii) (Harder) } p(x)=6 x^{3}+27 x^{2}+37 x+15
$$

Hint: this polynomial does not have an integer root as in the last example, and so does not have a factor of the form $x+a$ for some $a \in \mathbb{Z}$. But it does have a factor of the form $a x+b$ for some $a, b \in \mathbb{Z}$. Show that for such a factor we must have $a \mid 6$ (the coefficient of x^{3}) and $b \mid 15$ (the constant term).

Search through all possible such (a, b) to find a factorization of $p(x)$ into a linear and a quadratic factor, both factors having integer coefficients.
iii) $p(x)=6 x^{4}+39 x^{3}+91 x^{2}+89 x+30$.

Hint this does have an integer root.
ii) (Harder) $p(x)=x^{4}+4 x^{3}+11 x^{2}+14 x+12$.

Hint, this polynomial does factor but has no real linear factor but does factor into two quadratics, each with integer coefficients.

For more information on polynomials see WEB ADDRESS

